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THE EFFECT OF PLASTIC DEFORMATION
ON THE TRANSPORT OF HYDROGEN IN NICKEL

M. Kurkela and R.M. Latanision
Corrosion Laboratory

Department of Materials Science and Engineering
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Introduction

The permeation of hydrogen into crystalline materials may occur in part by lat-
tice diffusion, by grain boundary (or other short circuit) diffusion, or, in
the case of specimens undergoing plastic deformation, by dislocation transport
(1). In the latter instance, the transport of hydrogen occurs in the form of
Cottrell atmospheres dragged by mobile dislocations. This was first suggested
by Bastien and Azou (2,3). Later, this concept has been supported by observa-

11 F tions of serrated yielding (4-7), tritium release measurements during plastic
deformation and autoradiographic techniques (8-10). Recently, Tien et al (11)
and Johnson and Hirth (12) have proposed models for the transport of hydrogen
as Cottrell atmospheres on disl.ocations and the generation of internal super-
satuLations of hydrogen, respectively.

The objective of this note is to report direct hydrogen permeation measurements
during plastic deformation in nickel showing that mobile dislocations transport
hydrogen at rates much higher than lattice diffusion and compare the observed
rates with theoretical predictions of the models.

Experimental

Strips of Ni 270 (99.97 %Ni) were cold rolled to a thicknest; of 0.43mm.
Tensile bars with a gage length of 5cm and reduced section width of 1.875cm
were machined from these strips. The specimens were annealed undeL an argon
atmosphere at 1000 0 C and then water quenched. For permeation studies, they
were polished with emery papers and one side (anodic) was coatecd with a thinI layer of palladium by electroless deposition from "Pallamerse" solution.

, • The permeation of hydrogen was studied by the method developed by Levanathan
V and Stachurski (13), modified to allow plastic deformation of the specimen
V t during the introduction of hydrogen. FIG 1 shows a schematic of the apparatus.

The specimen was mounted between the two compartmcnts giving a 0.3cm2 area of
exposure (FIG 2). The specimen-cell assembly was positioned between the cross-

heads of an Instron machine. The anodic side was potentiostated at a potential
above the reversible potential for the hydrogen electrode. Cathodic charging
was performed galvanostaticall'. Specin,ers were deformed at a constant exten-
sion rate. An immediate increase in the background anodic current is observed
at the onset of macroscopic plastic deformation, perhaps due to accelerated
anodic dissolution in the presence of plastic deformation or to disruption of
surface films. After some time, the current reaches a steady state value and
at this point hydrogen charging is begun (FIG 3). Permeation currents and
stress-strain curves were recorded. All experiments were run at room tempera-

I ture.
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lattice diffusion is probably the predominant mechanism.
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Increasing strain .rate leads to higher permeation fluxes. This is due to higher
average dislocation velocities and a higher dislocation density as given by the
relationship

S= Pbv (1)

where i is the strain rate, p is the density of mobile dislocations, v is the
dislocation velocity and b the Burgers vector.

The differenci in the decay transients (FIG 6) can also be considered in terms
of dislocati:,n velocities. In the case of the higher strain rate, the average
dislocation velocity is larger and thus hydrogen is drained out of the specimen
faster on switching off the charging current.

Increasing charging currents lead to higher permeation fluxes due to the higher
concentration of hydrogen introduced into the specimen.

Tien et al (11) have proposed a quantitative model for hydrogen transport by
mobile dislocations. They derived the following expression for the maximum
penetration distance of hydrogen in plastically deformed metal

DH EB

x1 m -•T p (2)
where EB is binding energy of hydrogen to dislocation, 30b is interaction dis-
tance of the dislocation with the impurity cloud, DH is diffusion coefficient



of hydrogen and tp is duration of plastic deformation.
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In contrast, the penetration distance due to the lattice diffusion is

x 2pi 4t5 Ht (3)
Applying these two equations to the present case, we obtain the following



expression for the ratio xI/x 2
Sx, 1o2 FP (4)

Using equations (3) and (4) one finds that about five seconds of plastic deforma-
tion are required for hydrogen to travel through specimens Gf thickness used
in this study. This calculation shows that the model by Tien et al is in good
agreement with the observed transport rates.
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I i• .Conclusions

f i It has been shown'that mobile dislocations in nickel transport hydrogen at
rates far in excess of lattice diffusion. Increasinq strain rate and charging
current increase the permeation flux of hydrogen. The observod transport rates
agree with the predictions of the model by Tien et al.
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